1 research outputs found

    Analyzing solid waste landfills using satellite imagery and designing new landfill reception areas

    Get PDF
    Solid waste disposal is important for environmental management for good quality of life in urban cities. Among them is the final disposal of waste in landfills. Landfills can receive tons of waste, but they must be far away from natural resources and urban areas. The research aimed to analyze the physical and biological conditions and design a geolocation map of new sanitary landfills in three urban cities in Peru (Chilca, El Tambo and Huancayo). Landsat 8 OLI/TIRS satellite imagery was used to analyze the physical (LST and Methane) and biological (NDVI and SAVI) conditions of the landfills. The geolocation of the landfills was analyzed through the relationship, intersection and discrimination between their surface criteria (soil type, current use, geology and physiography) and climatic factors (temperature, humidity and precipitation). The physical and biological conditions of the landfills were: CH4: Chilca 8.33g > Huancayo 4.76g > El-Tambo 3.17g; SAVI: Chilca 0.61 > El Tambo 0.54 > Huancayo 0.51; LST: Huancayo 26.15°C > Chilca 24.03°C > El Tambo 22.75°C; NDVI: Chilca 0.85 > Huancayo 0.81 > El Tambo 0.8. In the three cities, "natural grasslands" were considered suitable land for the new solid waste landfill site. The multiple relationship, intersection, and discrimination of surface criteria and climatic factors were categorized into five types of sustainable geolocation (very appropriate > appropriate > moderately adequate > less appropriate > inappropriate) for new solid waste landfills. It was very important to discount the influence areas (rivers and lagoons) to avoid damaging the natural resources.      
    corecore